
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6, 325-349 ( I  986) 

COMPARISON OF ITERATIVE AND DIRECT SOLUTION 
METHODS FOR VISCOUS FLOW CALCULATIONS IN 

BODY-FITTED CO-ORDINATES 

M. E. BRAATEN AND W. SHYY 
General Electric Corporate Research and Development, PO Box 8,  Schenectady, New York, 12301, U.S.A. 

SUMMARY 

An investigation has been conducted to study the relative performance between the line iterative and direct 
sparse matrix solution procedures for viscous flow calculations. A key focus point is to assess the method of 
speeding up the computation in the context of the body-fitted co-ordinate system. A series of test problems has 
been set up to  investigate the effects of mesh skewness, Reynolds number and grid size on the two methods. 
The fully coupled fully implicit treatment of the equations in the direct sparse matrix method leads to rates of 
convergence that are much more rapid than the iterative method. Whereas the convergence rate of the 
iterative method is found to decrease monotonically with increasing global mesh skewness and Reynolds 
number, the direct method is quite insensitive to  these parameters. However, the increased complexity of the 
equations in curvilinear co-ordinates causes the storage requirements and the cost per iteration of the direct 
method to be even higher than in corresponding methods using Cartesian co-ordinates. Consequently, the 
total C P U  time for the direct method is found to be proportional to N 2  (where N is the total number of nodes), 
which compares unfavourably with the iterative method, where C P U  time varies as N.’ . ’  Hence, increases in 
grid size penalize both the CPU time and computer storage requirements of the direct method more severely 
than the iterative method. These findings make the straightforward adoption of the direct sparse matrix 
method less attractive in the curvilinear co-ordinate system. However, the importance of the coupling between 
the equations on speeding up the convergence of the solution procedure is clearly demonstrated, suggesting 
possible alternatives for achieving code speed-up. 
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INTRODUCTION 

In primitive variable finite difference formulations of Navier-Stokes flows, the presence of the 
pressure causes difficulty because there is no explicit conservation equation with which to calculate 
it. The importance of the treatment of the coupling between the pressure and velocity fields has 
been the subject of several previous investigations.’.’ A basic approach common to many solution 
 procedure^^-^ is to treat the pressure using a guess-and-correct procedure. The momentum 
equations are first solved using a guessed pressure field. Approximate equations for correcting the 
pressure field are then derived by manipulation of the momentum and continuity equations. The 
pressure field is updated and the velocity field is corrected to satisfy the continuity equation using 
these corrections. The successive-line-underrelaxation (SLUR)6 method is commonly adopted in 
this approach. 

Recently, the use of direct sparse matrix techniques for solving the Navier-Stokes equations in a 
fully coupled manner has been pr~posed .~ , ’  The discrete momentum and continuity equations 
governing the Navier-Stokes flow were assembled into one large set, and solved using a sparse 
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form of LU decomposition.8 The resulting algorithm was found to be very efficient, rapidly 
convergent, and r bust to changes in the flow parameters. For flows in simple geometries using 
Cartesian co-ordi ates, the sparse matrix procedure was reported to be significantly faster (by a 
factor of five to ten) than the iterative SIMPLE3 algorithm. The only major drawback of the 
method was the requirement of large amounts of computer storage. 

However, References 2 and 7 considered only the Cartesian co-ordinate system. Since body- 
fitted curvilinear co-ordinate systems are very effective in treating complex flows within irregular 
geometries, it is of great interest to study the implications of using the curvilinear co-ordinate 
system on the solution algorithm. As noted in References 4 and 9 it is no trivial task to develop a 
suitable numerical algorithm for calculating the Navier-Stokes equations using a curvilinear co- 
ordinate system; both the accuracy and computing efficiency aspects need to be reassessed. 

The present paper aims at studying the computational efficiency of both iterative and direct 
solution methods in viscous flows calculated on curvilinear co-ordinate systems. The effects of the 
Reynolds number and mesh skewness on the computer run time are investigated, and the relative 
performances between the iterative and sparse direct methods are assessed. The use of a curvilinear 
body-fitted co-ordinate system is the key focus point. A series of test problems has been studied. 
The cases include a series of 2-D planar channels with progressive skewness of the grid system and a 
kidney-shaped channel. These problems are studied for a range of grid sizes and Reynolds 
numbers. 

f 

NUMERICAL ALGORITHMS 

The governing conservation equations can typically be written in Cartesian co-ordinates for the 
dependent variable 4 in the following form: 

where r is the effective diffusion coefficient and R is the source term. For 4 = u and u, equation (1) 
becomes the x- and y-momentum equations, respectively. For 4 = 1 and r and R equal to zero, 
equation (1 )  is the continuity equation. When new independent variables 5 and g are introduced, 
equation (1 )  changes according to the general transformation 5 = 5 (x, y), q = q(x, y). Equation (1) 
can be rewritten in (5, q)  co-ordinates as follows: 

where 
u = uy, - VXq, 
v = vx, - uy,, 

q1 =x,’+y;, 
q2 = x,x, + YyY,, 
q3 = x< + Y,, 
J = X,YS - X,Yy 

2 2  

and S ( 5 ,  q )  is the source term in the 5-q co-ordinates. A staggered grid system3 is adopted, and the 
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implementational details in the context of a curvilinear co-ordinate system can be found in 
Reference 4. 

The iterative method used here is described in detail in References 4 and 10. The momentum 
equations are first solved to obtain the velocity components u, u with the given pressure field. After 
solving the momentum equations, the contravariant velocity components U and V are calculated 
from the velocity field. If the calculated contravariant velocity field does not satisfy the continuity 
equation, the pressure distribution and velocity field are corrected accordingly. The derivation 
of the pressure correction equation, as well as the detailed discussion of the numerical 
implementations, can be found in References 4, 9 and 10. Each equation is solved using the 
successive-line-underrelaxation (SLUR) tridiagonal equation solver. 

The sparse matrix solution procedure used here represents a direct extension to curvilinear co- 
ordinates of the methods developed in References 2 and 7 for Cartesian co-ordinates. For the 
purposes of clarity in the discussion, the procedure will be described first in a form applicable to 
either Cartesian or curvilinear co-ordinates; then the novel elements introduced by the use of a 
curvilinear co-ordinate system will be addressed in more detail. 

In the sparse matrix procedure, the basic discretization procedures used in the iterative method 
are followed except that the pressure correction equation is not used; rather, the original continuity 
equation is discretized directly. The momentum and continuity equations are combined into one 
large set, linearized by successive substitution, and solved in a fully coupled fashion using a sparse 
matrix form of LU decomposition. The Yale Sparse Matrix Package (YSMP),' which was found to 
perform well for viscous flow calculations in Cartesian co-ordinates in References 2 and 7, was also 
adopted here. 

In the LU decomposition process, the coefficient matrix is factorized into a lower triangular 
matrix L and an upper triangular matrix U. The solution to the problem is then found by forward 
and back substitution using these triangular matrices. The LU decomposition of the coupled 
system of momentum and continuity equations leads to a banded factorized matrix of the form 
shown in Figure 1 .  

3 

A Q b 

Figure I .  Banded structure of the factorized matrix in the direct method (row-wise ordering) 
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Since the coefficient matrix is sparse, the triangular L and U matrices are also rather sparse, so 
the banded region is not full, but contains many zeros. YSMP uses a compact storage scheme to 
store only the non-zero elements of each of these three matrices. In this scheme, the storage 
required for the pointers and elements of each matrix is roughly twice the number ofelements in the 
matrix. 

YSMP performs the elimination process without pivoting in order to preserve sparseness and to 
achieve maximum computational efficiency. It is therefore essential that the original matrix does 
contain any zero elements on the main diagonal (i.e. the matrix must have a full transversal), since 
YSMP fails for such cases. The original continuity equation causes a large portion of the main 
diagonal to contain zeros if an equation-wise ordering is used. Vanka and Leaf' found it necessary 
to reorder the equations and unknowns prior to the solution to ensure a full transversal. In the 
present work, the reordering process in avoided using the procedure described in Reference 7. This 
involves introducing a fictitious pressure term into the continuity equation in a manner similar to 
that in the so-called penalty formulation approach.' '-' Briefly, in the penalty function approach, 
the continuity equation is viewed as an incompressibility constraint that the velocity field must 
obey. The result of the penalty formulation is an approximate relationship between the pressure 
field and the velocity field, which replaces the continuity equation. This penalty relation takes the 
form 

au av P -+- +-= 0, ax ay ;1 

I = RepA, (3b) 
where Re, p and A are the Reynolds number, fluid viscosity and an arbitrarily large constant, 
respectively. The derivation of equations (3) is outlined in Reference 14. A is called the penalty 
parameter. In the limit as A -, cc the solution of the penalty formulation can be proved to converge 
to the exact solution of the original e q ~ a t i o n . ' ~  For suitably large values of A, the penalty 
formulation gives an approximate solution to the original equations. 

In the present approach, equation (3a) is adopted as the continuity equation only for the sake of 
computational convenience, so that the resulting system of linear equations leads to one with a full 
transversal. The coupled set of equations for the solution vector $, containing the unknown U ,  I/ 
and P ,  which originally took the form 

A$ = 6, (4) 

( 5 )  

is reformulated into the following form: 

A($ - $*) = 6 - A $ * ,  

where $* is a guessed solution. The original continuity equation without the fictitious pressure 
term, which is used to evaluate the right-hand side of the converged solution, is not affected by the 
presence of the fictitious pressure term, or consequently by the choice of A. This is in contrast to the 
penalty formulation described in References 11-13, where the accuracy of the solution is directly 
dependent on the choice of A. The only restriction on the choice of A in the present procedure stems 
from the fact that the perturbed matrix A that is factorized must be suitably close to the original A 
matrix so that the iterative procedure defined by equation ( 5 )  converges rapidly. With A taken in 
the range lo5 < A < lo'', the procedure was found to converge quickly to machine accuracy on a 
Cray-1 computer with its fourteen digits of accuracy. This reformulation also acts to reduce the 
round-off error, since corrections to the solution are calculated, rather than the solution itself. This 
procedure is commonly used to iteratively refine the direct solution of ill-conditioned linear 
systems. l 6  

The solution process in YSMP is divided up into four distinct stages: reordering of the matrix to 
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reduce fill-in, symbolic factorization of the matrix to determine the positions of the non-zeros in the 
factorized matrix, numerical factorization of the matrix in which the actual numerical values of 
the entries in L and U are determined, and finally forward and back substitution using the 
calculated L and U matrices to solve for one right-hand side. The flexibility that results from 
separating the process into these distinct steps is a very important consideration in efficiently 
solving non-linear flow problems, since a sequence of matrix equations must be solved. Since 
the structure of the matrix does not change from iteration to iteration, even though the values 
in the matrix differ, the reordering and symbolic factorization steps need to be done only once. 
In subsequent iterations, the numerical factorization can be performed using the previously 
stored symbolic factorization. 

As convergence is approached, the coefficients in the A matrix stop changing very much, and the 
solution can be driven by a previously computed factorization of the matrix. Each iteration of this 
type consists of only the final forward and back substitution step, using the previously computed 
factorization. This procedure represents an extension of the D'yakonov iteration method described 
in References 10 and 17. Typically, it is only necessary to factorize the matrix two or three times 
before switching to the D'yakonov iterations. Since the cost of a D'yakonov iteration is only 5-10 
per cent of the cost of an iteration in which the matrix is refactorized, the savings are substantial. 

The use of non-orthogonal curvilinear co-ordinates introduces several new features to the 
momentum and continuity equations that do not appear in their Cartesian counterparts. 
Expressed in terms of the Cartesian velocity components u and u, and the pressure P, the equations 
for x-momentum, y-momentum, and continuity become 

The momentum equations contain additional viscous terms involving cross derivatives, plus an 
additional pressure force term resulting from the pressure gradient in the second direction. The 
discrete continuity equation contains both u and u at each control volume face, rather than just the 
normal velocity as in Cartesian co-ordinates. 

The first choice in the direct solution procedure is whether to use the contravariant velocity 
components or the Cartesian velocity components as the primary variables. Initially, we tried the 
use of the contravariant components, since this leads to a simpler continuity equation. However, 
the momentum equations written strictly in terms of U and V become more complicated. 
Consequently, the extra terms involving V in the original x-momentum equation and U in the 
y-momentum equation, were placed in the respective source terms. It was found that when the 
numerical co-ordinate lines deviate significantly from the Cartesian co-ordinate lines, those extra 
source terms have dominant influence on the convergence rate, so that the direct method does not 
converge any faster than the iterative method. 
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Owing to our desire to be able to handle general curvilinear grids, we switched to using the 
Cartesian velocity components as the principal variables. The resulting discrete continuity 
equation contains more terms, so the resulting coefficient matrix is not as sparse as inCartesian co- 
ordinates. The structures of the coefficient matrix in Cartesi 
ordinates are compared in Figures 2(a) and 2(b). 

A 

co-ordinates and curvilinear co- 

b 

Figure 2(a). Structure of the coefficient matrix in the direct method (Cartesian co-ordinates) 

A o =  b 

Figure 2(b). Structure of the coefficient matrix in the direct method (curvilinear co-ordinates) 
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During the course of this investigation, the importance of treating all of the pressure terms in the 
momentum equations implicitly became apparent. When the grid is highly skewed, the pressure 
gradient in the second direction can become more influential than the gradient in the first direction. 
If this gradient is treated explicitly, the coupling between the momentum and continuity equations 
is effectively lost, and the rate of convergence of the direct method is again comparable to the 
iterative method. Only when both pressure gradients are treated implicitly is the coupling retained, 
which is the key to achieving fast convergence. 

The additional terms in the coefficient matrix shown in Figure 2(b) lead to more fill-in of the 
band structure of the factorized matrix shown in Figure 1. Consequently, the storage requirements 
for the direct solver in curvilinear co-ordinates are higher than in Cartesian co-ordinates. Since the 
cost of the direct solver also increases as the fill-in increases, the CPU time will also be higher. The 
performance of the direct solver in curvilinear co-ordinates is addressed in the next section. 

TEST PROBLEMS AND NUMERICAL RESULTS 

In the present study, a series of five test geometries was set up. The cases include a series of 2-D 
planar curved channels with progressive skewness of the grid system, as shown in Figures 3(a)-(d). 
The contours of the walls are described as parabolic functions of the form 

y = ax2 + b,  

with a = 0.5, 0.8, 1.1 and 2.2 for Figures 3(a), (b), (c) and (d), respectively. In all cases, 0 d x d 1. 
The inlet height of the channel is 0.2. The flows are from left to right with the plug velocity 
profile as the inlet flow condition. The flows considered are laminar with three different inlet 
Reynolds numbers: 20, 500 and 2000. Both the so-called hybrid scheme3 and the second-order 
upwind scheme" were used to approximate the convection terms; these will be discussed 
separately. 

Iterative method 

Figure 4 shows the convergence rate of the iterative solution method for the flows in the four 
geometries (21 x 16 nodal points) at a Reynolds number of 2000; the hybrid scheme was used in all 
cases. The underrelaxation factors used in the momentum and pressure correction equations are 
0.3 and 0.5, respectively. Within each cycle the SLUR tridiagonal solver was called 3 and 4 times for 
the momentum and pressure correction equations, respectively. Both the normalized apparent 
mass residual (the absolute sum of the mass imbalances in all of the computational meshes 
normalized by the total inlet mass flux), and the sum of the kinetic energies at all nodal points are 
shown. As noted in References 4 and 10, although the normalized mass residual indicates the formal 
departure from convergence, it is not a good absolute measure of the convergence status, since its 
levels vary according to the number of nodal points, the Reynolds number, the grid distribution, 
etc. Hence the steadiness of the kinetic energy is used as the criterion to judge the convergence 
status. 

Figure 4 shows that, with the same Reynolds number, the skewness of the mesh system has an 
obvious impact on the computing time. As the channel curvature increases, and hence the meshes 
are increasingly sheared, the number of iterations needed to achieve convergence increases 
monotonically. Since the flows are non-separating, the use of a curvilinear co-ordinate system is 
expected to reduce the numerical diffusion significantly because the co-ordinate lines can easily 
follow the streamlines. 

Figure 5 shows the convergence histories using the second-order upwind scheme" for flows with 
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Re = 2000 in the four geometries (21 x 16 nodal points); the steady-state levels of kinetic energy of 
the flow field are very close to those in Figure 4. Indeed, the calculated flow fields are virtually 
indistinguishable between the hybrid and second-order upwind schemes for three different grid 
systems, i.e. 21 x 16,27 x 22 and 36 x 31, which indicates that the body-fitted co-ordinate system 
can effectively reduce the numerical deficiency of the hybrid scheme. Figures 4 and 5 also show that 
the computing times for the hybrid and second-order upwind schemes are more or less 
comparable, but the former appears slightly more efficient on the highly sheared meshes. 

Figure 3. Four test geometries of curved channel (21 x 16 nodes) y = ux2 + b, 0 < x < 1: (a) a = 0.5; (b) a = 0.8; (4 a = 1.1; 
(d) u = 2.2 
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Figure 4. Flow in a series of curved channels (Re = 2000). (1) a = 0.5; (2) a = 0.8; (3) a = 1.1; (4) a = 2.2 (a) normalized mass 
residual; (b) kinetic energy 
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Figure 5. Same as Figure 4 except that the second-order upwind scheme is used: (a) normalized mass residual; (b) kinetic 
energy 
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Figure 6. Effects of Reynolds number on the iterative method (channel shown in Figure 3(d), 21 x 16 grid): (a) normalized 
mass residual; (b) kinetic energy 
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Figure 7. Effects of grid size on the convergence rate of the iterative method (channel shown in Figure 3(d), Re = 2000): 
(a) 21 x 16 grid: (b) 27 x 22 grid; (c) 36 x 31 grid; (d) 41 x 36 grid (e) 51 x 41 grid: (a) normalized mass residual; 

(b) kinetic energy 
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Without going into any detail, it is worth noting that for general complex recirculating flow 
calculations, unless a continuous grid refinement procedure is adopted, there exists a limit for the 
grid system to help improve the numerical accuracy of a lower order finite difference operator.lg 
This limit may arise, for example, as a result of the interactions of a complex geometry and the 
resulting flow. The grid adaptation with respect to the flow structures is a different issue20921 and 
will not be discussed any further. Nevertheless, in the following, the hybrid scheme is used in all the 
results since it appears adequate for the purpose of this study. 

Figure 6 compares the Reynolds number effects on the computing time, on the 21 x 16 grid. The 
computing time increases as the Reynolds number increases. The difficulty of calculating high Re 
flows is clearly observed here. Finally, Figure 7 compares the convergence histories of the flow with 
Re = 2000 in the most curved channel (shown in Figure 3(d)) with five different levels of grid points, 
i.e. 21 x 16,27 x 22,36 x 31,41 x 36 and 51 x 41. The differences in terms of the characteristics of 
the normalized mass residual are certainly not large. Figure 7 suggests that the number of 
iterations needed to achieve the convergence is proportional to no more than where N is the 
total number of nodal points being used. This finding is very interesting, since it was reported in 
References 2 and 7 that, in the context of the Cartesian co-ordinates, the number of iterations 
needed is linearly proportional to the total number of nodal points. This difference is presumably 
due to the fact that the curvilinear co-ordinates follow the streamlines more closely; hence the flow 
signals are numerically propagated along the paths closely following those in physical procedures, 
and the couplings among the variables are treated in a better manner. Figure 7 indicates that the 
CPU time of the iterative method varies according to N ' . 5 ,  since the operation count is 
proportional to N within each iteration. 

Sparse matrix method 

In the following, the computer storage required by the direct method is discussed, and then the 
results obtained using the sparse direct method and the iterative method are compared. It is noted 
that all of the results reported in the previous discussion were run on a VAX !1/780, whereas 
all of the following results were run on a Cray-1. This arrangement was strictly due to limitations 
on computing resources and the fact that YSMP was more readily available on the Cray. In 
this work, no particular effort was taken to vectorize either procedure, so that the Cray acts 
essentially as a fast scalar computer for these calculations. Consequently, the ratios of the 

Table I. Storage requirements for the direct method (NI = number of grid 
points in 5 direction, NJ = number of grid points in r]  direction, N = number 

of unknowns) 

I I1 111 

(a) Grid 
(b) NI 
(4 NJ 
(d) N (total) 
(e) N (int) 
( f )  Storage 
(8) Elements 
(h) Bandwidth 
(i) % Band 

(k) % Cartesian 
(3  % Full 

11 x 1 1  21 x 16 
12 22 
12 17 

432 1122 
300 900 

29,48 1 147,049 
14,741 73,525 

76 136 
64.65 6007 
16.38 9.08 

226.78 312.37 

21 x 21 
22 
22 

1452 
1200 

198,459 
99,230 

136 
60.80 
6.39 

264.6 1 

IV 

16 x 31 
17 
32 

1632 
1350 

232,739 
1 16,370 

106 
81.32 
6.89 

29 1.72 

~~ 

V VI 

27 x 22 41 x 41c 
28 42 
23 42 

1932 5292 
1638 4800 

357,675 461,000 
178,838 230,500 

172 256 
63.48 18.76 
6.67 1.00 

353.50 100.00 
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efficiencies of the iterative and direct methods are expected to be representative of what would 
be obtained on other scalar computers. 

The additional storage required by the direct sparse matrix method over that of the iterative 
method results from the need to store the factorized form of the matrix. When the compact storage 
scheme is used, this storage is approximately equal to twice the number of elements in the 
factorized matrix. The storage requirements for the direct solver are summarized in Table I. 
Columns I-V pertain to the storage requirements of the current direct solver on various sizes of 
curvilinear grids, whereas Column VT gives the same information for the sparse matrix algorithm 
of Reference 7 for a larger 41 x 41 Cartesian grid. The required storage for the LU decomposition, 
the actual number of array elements in the decomposition, and the bandwidth of the factorized 
matrix are shown in rows (f), (g) and (h), respectively. The required storage for the current direct 
procedure is compared to that of a band matrix solver in row (i), to the use of Gauss-elimination for 
the full matrix in row (j), and to the storage requirements of the sparse matrix algorithm of 
Reference 7 on an equivalently sized Cartesian mesh in row (k). 

Clearly, the additional coefficients arising from the use of a curvilinear co-ordinate system cause 
much greater fill-in of the band structure of the factorized matrix, causing the required storage to 
increase by a factor of three relative to Cartesian co-ordinates. Furthermore, since the band is more 
than 50 per cent full, the use of the compact storage scheme in the sparse matrix procedure actually 
causes the storage requirements to be 20-60 percent greater than if a simpler band storage scheme 
had been used. In contrast, in Cartesian co-ordinates the band is much sparser, and the use of the 
compact storage scheme reduces the storage requirement by a factor of three over a band storage 
scheme. Hence, in curvilinear co-ordinates, the increased fill-in of the factorized matrix destroys the 
increased efficiency that the sparse matrix solver enjoyed over a band matrix solver in Cartesian co- 
ordinates. 

Since the factorized matrix acts more-or-less as a banded matrix, the only way of reducing the 
storage requirements of the direct scheme is to reduce the bandwidth of the factorized matrix. Since 
the bandwidth depends only on the smallest number of grid points in either direction, the only 
practical way to reduce the bandwidth is to use a grid with many fewer points in one direction than in 
the other. notes that problems on grids as large as 31 x 200 can be successfully solved by a 
direct scheme. In Table I, the smaller bandwidth of the 16 x 31 grid causes its storage requirements 
to be comparable to those of the 21 x 21 grid, even though the 16 x 31 grid contains more internal 
points. The subdomain schemes described in References 7 and 23 exploit this behaviour by dividing 
the solution domain axially into subdomains. The resulting systems of equations over each 
subdomain have a much smaller bandwidth than the system or equations over the whole domain, 
and consequently the storage requirements are substantially reduced. 

Figure 8 shows the convergence histories of the sparse direct method solution on the four 
different curved channels shown in Figure 3 with Re = 20. Although the normalized apparent mass 
residuals vary according to the mesh skewness, it took virtually the same number of iterations for 
all cases to obtain a convergent solution. The number of iterations needed to achieve convergence 
is smaller than 10, which is comparable to the performance reported in Cartesian co-ordinates. 

Figures 9 and locompare the performances of the iterative and sparse direct methods in the most 
curved channel on a 2 1 x 16 grid for two different Reynolds numbers: Re = 20 and 2000. Although 
the direct method always gives the convergent solution with less CPU time, the ratio of CPU time 
between the iterative and sparse direct methods increases as Re increases. As discussed previously, 
the iterative method takes more iterations as the Reynolds number increases. However, as shown 
in Figure 11 ,  the sparse direct method is very insensitive to the Reynolds number effects, which is 
not the case for the iterative method. 

Finally, to test the effect of grid size on the direct method, results calculated on two different 
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Figure 8. Effects of mesh skewness on the direct method, (Re=20, 21 x 16 grid, a =0.5, 0.8, 1.1 and 2.2 for (1),(2),(3), 
and (4), respectively): (a) normalized mass residual; (b) kinetic energy 
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Figure 9. Comparison of iterative and direct methods (channel shown in Figure 3(d), Re = 20,21 x 16 grid): (a) normalized 
mass residual; (b) normalized mass residual vs. Gay-1  CPU time 
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Figure 10. Comparison of iterative and direct methods (channel shown in Figure 3(d), Re = 2000, 21 x 16 grid): 
(a) normalized mass residual; (b) kinetic energy 
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levels of grid system, i.e. 21 x 16 and 27 x 22 are compared in Figure 12 with Re = 2000. Figure 12 
suggests that the number of iterations needed by the direct method is again quite independent of 
the grid size. However, in terms of the CPU time, it appears that the direct method is proportional 
to N 2 ,  which is somewhat more than that reported by Vanka and Leaf.2 It is clear from the Figure 
that the total CPU time is dominated by the cost of the first few iterations in which the matrix is 
factorized; the additional D'yakanov iterations add relatively little. For a pure band matrix solver, 
the cost of factorizing the matrix is directly proportional to N P ,  where P is the bandwidth of the 
non-zero elements in the coefficient matrix. 1 6 9 2 4  In the context of the Navier-Stokes flow 
computation, the effective bandwidth after a proper reordering procedure is proportional to 
N o . 5  if the grid system is close to a square one. Since the band is quite full for the curvilinear 
co-ordinate calculations, and the cost of the iterations in which the matrix is factorized dominates, 
it is not surprising that the total CPU time requirement of YSMP with respect to the grid size 
has the same characteristics as a band matrix solver. Similarly, the storage requirement of the 
direct solver is basically proportional to N P ,  i.e. N1'5, which is again similar to the band matrix 
solver. 

Based on the previous discussions, the following correlations can be compared between the 
iterative and direct methods in the context of a curvilinear co-ordinate system: 
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Figure 1 1 .  Effects of Reynolds number on the direct method (channel shown in Figure 3(d), 21 x 16 grid): (a) normalized 

mass residual; (b) kinetic energy 
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Figure 12. Effects of grid size on direct method, (channel shown in Figure 3(d), Re = 2000): (a) normalized mass residual 

vs. number of iterations; (b) normalized mass residual vs. CPU time 
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Figure 13. Test geometry for kidney-shaped channel 

In regard to either CPU time or computer storage, it appears that the iterative method is 
increasingly favourable as the grid size becomes larger. 

To explore the relative performances of the two solution methods for the recirculating flows, the 
kidney-shaped two-dimensional planar channel flow considered in Reference 4 is again studied 
here (see Figure 13). The flow is from left to right and is taken as laminar with a plug velocity profile 
at the inlet. The Reynolds number based on the inlet height is 1000. For the iterative method, a 
series of calculations have been conducted for five different grid sizes, ranging from 21 x 16 to 
51 x 41. The correlations of CPU time and core storage versus grid sizes given in equation (7) 
are still valid for the present recirculating flow. The presence of the recirculation zones penalizes 
the computing efficiency of the direct method significantly, since more factorizations are required 
for convergence. Compared to the curved channel flows discussed previously, the number of LU 
factorizations increases from 2 to 7 in the present flow. Since the numerical factorization is the 
most time-consuming part of the whole direct solution procedure, the increase in the number 
of LU factorizations makes the resulting CPU time of the direct method for the kidney-shaped 
channel flows much higher than for the curved channel flows. Figure 14 shows that, even though 
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Figure 14. Comparison of iterative and direct methods for kidney-shaped channel flow (Re = 1O00, 21 x 16 grid): 
(a) normalized mass residual; (b) kinetic energy 

it took virtually the same number of iterations as before for the direct method to converge, the 
CPU time for the recirculating flow is roughly double of that for the curved channel flow. For 
the iterative method, on the other hand, the CPU time can decrease for the present recirculating 
flow calculations, owing to the fact that the mesh system of the kidney-shaped channel is less 
skewed than that in Figure 3(d). Figure 14 indicates that even for the small grid comprised of 
21 x 16 nodes, the iterative method is more economical than the direct method. As the grid size 
increases, the differences between the two methods increase. 

SUMMARY AND CONCLUSION 

An investigation has been conducted to study the relative performance between the line iterative 
and direct sparse matrix solution procedures for viscous flow calculations in body-fitted co- 
ordinates. The effects of Reynolds number, mesh skewness and grid size on the computing 
efficiency as well as on the core storage requirement have been studied. The use of the curvilinear 
co-ordinates is the key focus point here. The following observations can be made as a result of this 
investigation. 

1. When the Cartesian velocity components are treated as the unknowns, and all of the pressure 
terms are treated implicitly, the rate of convergence of the direct method applied to flows 
calculated in curvilinear co-ordinates is very comparable to that reported for the direct 
method in Cartesian co-ordinates. However, the extra terms arising from the co-ordinate 
transformation make the storage of the present calculations using YSMP three times that 
with Cartesian co-ordinates, causing the cost per iteration also to be much higher. 
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2. The Reynolds number and mesh skewness have noticeable effects on the convergence rate of 
the iterative method but not on that of the direct method. 

3. With the same geometry, the number of iterations required by the iterative method is 
proportional to No,’, which is less sensitive than that in the Cartesian co-ordinates, which is 
proportional to N .  Furthermore, Reference 25 reported that in the context of curvilinear co- 
ordinates the convergence rate of the iterative method is pretty insensitive to the 
underrelaxation factors. With regard to the direct method, the grid size has little effect on the 
number of iterations needed to achieve convergence. 

4. In curvilinear co-ordinates, the cost per iteration for the iterative method is still proportional 
to N ,  but that of the direct method is proportional to N 2 ,  which is somewhat larger than in 
Cartesian co-ordinates. 

5. It appears that the use ofcurvilinear co-ordinates make the relative performance between the 
iterative and direct methods different from that in Cartesian co-ordinates. As a result of these 
differences, increases in the grid size penalize both the core storage and the CPU time of the 
direct method more severely than the iterative method. These findings, make the 
straightforward adoption of the direct sparse matrix method less attractive in the body-fitted 
co-ordinate system. 

In curvilinear, as in Cartesian, co-ordinates, the importance of retaining the coupling between 
the velocity and pressure fields is demonstrated by the vastly superior rate of convergence of the 
direct scheme relative to the iterative scheme. Although the storage requirements and cost per 
iteration of a fully implicit direct solution proved excessive, improvement of the treatment of this 
coupling is still probably the key to code speed-up. Some sort of compromise between the fully 
uncoupled iterative scheme and the fully coupled direct scheme appears to be what is needed. 
Methods such as SIMPLER3 and PIS026 represent means of improving the coupling in the 
framework of the iterative scheme. Methods which solve the equations in a fully coupled manner 
over one line at a time23 or over subdomains’ represent means of retaining the coupling while 
reducing the storage and costs per iteration of the direct scheme. Methods of each type should be 
explored in the context of a curvilinear co-ordinate system. 
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